A study of inverse trigonometric integrals associated with three-variable Mahler measures, and some related identities

نویسنده

  • Mathew D. Rogers
چکیده

We prove several identities relating three-variable Mahler measures to integrals of inverse trigonometric functions. After deriving closed forms for most of these integrals, we obtain ten explicit formulas for three-variable Mahler measures. Several of these results generalize formulas due to Condon and Laĺın. As a corollary, we also obtain three q-series expansions for the dilogarithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME RESULTS OF MOMENTS OF UNCERTAIN RANDOM VARIABLES

Chance theory is a mathematical methodology for dealing with indeterminatephenomena including uncertainty and randomness.Consequently, uncertain random variable is developed to describe the phenomena which involveuncertainty and randomness.Thus, uncertain random variable is a fundamental concept in chance theory.This paper provides some practical quantities to describe uncertain random variable...

متن کامل

Log-sine evaluations of Mahler measures

We provide evaluations of several recently studied higher and multiple Mahler measures using log-sine integrals. This is complemented with an analysis of generating functions and identities for log-sine integrals which allows the evaluations to be expressed in terms of zeta values or more general polylogarithmic terms. The machinery developed is then applied to evaluation of further families of...

متن کامل

A pr 2 00 7 New 5 F 4 hypergeometric transformations , three - variable Mahler measures , and formulas for 1 / π Mathew

New relations are established between families of three-variable Mahler measures. Those identities are then expressed as transformations for the 5F4 hypergeometric function. We use these results to obtain two explicit 5F4 evaluations, and several new formulas for 1/π. MSC: 33C20, 33C05, 11F66

متن کامل

1 5 Ju l 2 00 7 New 5 F 4 hypergeometric transformations , three - variable Mahler measures , and formulas for 1 / π Mathew

New relations are established between families of three-variable Mahler measures. Those identities are then expressed as transformations for the 5F4 hypergeometric function. We use these results to obtain two explicit 5F4 evaluations, and several new formulas for 1/π. MSC: 33C20, 33C05, 11F66

متن کامل

New 5 F 4 hypergeometric transformations , three - variable Mahler measures , and formulas for 1 / π Mathew

New relations are established between families of three-variable Mahler measures. Those identities are then expressed as transformations for the 5F4 hypergeometric function. We use these results to obtain two explicit 5F4 evaluations, and several new formulas for 1/π. MSC: 33C20, 33C05, 11F66

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005